6 resultados para photosynthesis

em Cochin University of Science


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thesis embodies the results of a study on the variations in the parameters of productivity of two test species, a chlorophycean alga and a diatom. The chlorophycean alga Scenedesmus abundans was isolated from a fresh water pond whereas the diatom Nitzschia clausii was from the Cochin backwaters. Their growth parameters and their variations due to the effect of addition of some heavy metals have been studied. The growth parameters include biomass, production, respiration, photosynthetic pigments and end products of photosynthesis. The cell numbers were estimated by using a haemocytometer and production and respiration by oxygen light and dark technique. Spectrophotometric analysis for pigments, anthrone method for carbohydrate and heated biuret method for protein were the different methods employed in the present investigation. The present study is confined to nickel, cobalt, trivalent and hexavalent chromium. Different metals are discharged from various industries in and around Cochin. The effects of these metals individually and in combination are studied. Experiments to determine the effects of interaction of metals in combination enabled the assessment of the antagonistic and synergistic effect of metals on test species. The concentration or accumulation of metals on algae was determined by Atomic Absorption Spectrophotometry. The thesis has been divided into seven chapters. The introductory chapter explains the relevance of the present investigation. Chapter two presents the review of literature based on the work in relation to toxicity. Third chapter gives a detailed description of the material and specialized methods followed for the study. The effects of various metals selected for study - nickel, cobalt, trivalent and hexavalent chromium on the qualitative and quantitative aspects of productivity forms the subject of matter of the fourth chapter. The fifth chapter gives the impact of metals in combination on two species of algae. A general discussion and summary are included in the sixth and seventh chapters

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mangroves are considered to play a significant role in global carbon cycling. Themangrove forests would fix CO2 by photosynthesis into mangrove lumber and thus decrease the possibility of a catastrophic series of events - global warming by atmospheric CO2, melting of the polar ice caps, and inundation of the great coastal cities of the world. The leaf litter and roots are the main contributors to mangrove sediments, though algal production and allochthonous detritus can also be trapped (Kristensen et al, 2008) by mangroves due to their high organic matter content and reducing nature are excellent metal retainers. Environmental pollution due to metals is of major concern. This is due to the basic fact that metals are not biodegradable or perishable the way most organic pollutants are. While most organic toxicants can be destroyed by combustion and converted into compounds such as C0, C02, SOX, NOX, metals can't be destroyed. At the most the valance and physical form of metals may change. Concentration of metals present naturally in air, water and soil is very low. Metals released into the environment through anthropogenic activities such as burning of fossils fuels, discharge of industrial effluents, mining, dumping of sewage etc leads to the development of higher than tolerable or toxic levels of metals in the environment leading to metal pollution. Of course, a large number of heavy metals such as Fe, Mn, Cu, Ni, Zn, Co, Cr, Mo, and V are essential to plants and animals and deficiency of these metals may lead to diseases, but at higher levels, it would lead to metal toxicity. Almost all industrial processes and urban activities involve release of at least trace quantities of half a dozen metals in different forms. Heavy metal pollution in the environment can remain dormant for a long time and surface with a vengeance. Once an area gets toxified with metals, it is almost impossible to detoxify it. The symptoms of metal toxicity are often quite similar to the symptoms of other common diseases such as respiratory problems, digestive disorders, skin diseases, hypertension, diabetes, jaundice etc making it all the more difficult to diagnose metal poisoning. For example the Minamata disease caused by mercury pollution in addition to affecting the nervous system can disturb liver function and cause diabetes and hypertension. The damage caused by heavy metals does not end up with the affected person. The harmful effects can be transferred to the person's progenies. Ironically heavy metal pollution is a direct offshoot of our increasing ability to mass produce metals and use them in all spheres of existence. Along with conventional physico- chemical methods, biosystem approachment is also being constantly used for combating metal pollution

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The group cyanobacteria includes a large number of organisms characterised by a low state of cellular organization. Their cells lack a well defined nucleus. Cell division is by division of the protoplast by an ingrowth of the septum. These organisms are characterised generally by a blue green colouration of the cell, the chief pigments being chlorophyll-a, carotenes, xanthophylls, C phycocyanin and C phycoerythrin. The product of photosynthesis is glycogen. These organisms lack flagellate reproductive bodies and there is a total lack of sexual reproduction. They are also unique because of the presence of murein in the place of cellulose (cell wall) and the absence of chloroplast, mitochondria and endoplasmic reticulum. Just like bacteria some of them possess Plasmids and can fix atmospheric nitrogen. In the present study growth kinetics, heavy metal tolerance, tolerance mechanisms, heavy metal intake, and antibacterial activity of §ynechocystics salina Wislouch - a nanoplanktonic, euryhaline, Cyanobacterium present in Cochin back waters has been carried out for the potential biotechnological application of this organism. _§; salina occur as small spherical cells of 3n diameter (sometimes in pairs) with bluish green colour. The species is characterised by jerky movement of the cells and is structrually similar to other cyanobacteria

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Investigations on the water relations and gas exchange of/tcacia aun'culiji_2rmis were carried out in natural and controlled environments. The experiments were performed in both seedlings and five year old trees. Different sets of experiments were conducted in Acacia plantations, at Kothachira, Palakkad District and in .seedlings, at KFRI campus nursery mainly during the summer months. Investigations were also extended to seedlings of A.mangium, Aaulacocarpa and /Lholocericea, which are also phyllodinous species with the intention of comparing their physiology with Acacia auriculifomus. Potted seedlings of four species of Acacia viz., A. auriculi/E)/7r:i.r, /I. aulacocarpa, A. holocericea and A. mangium were used for the study. Measurements of relative water content (RWC), water potential, photosynthetic rate, transpiration, stomatal conductance, water use efficiency etc. of phyllodes were measured diumally in plants subjected to three stress conditions namely, drought, salinity and flooding

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The estuaries are highly productive ecosystems and characteristically are more productive than the adjacent river or sea. Estuarine producers which include planktonic algae, periphyton, herpobenthos as well as macrophytes are capable of nearly year round photosynthesis. Productivity of an environment is mainly the contribution of various groups of autotrophic flora. Any quantitative estimation excluding any one of these would be an underestimation. Periphyton plays a very important role in the productivity of estuarine and coastal waters. It has been reported that periphytic algae attain high biomass (Moss, 1968; Hansson, 1988a) and may contribute up to 80% of the primary production (Persson gt gtt, 1977); Considerable amount of work has been done on the productivity in Cochin backwaters by different investigators (Qasim, 1973, 1979; Nair gt gtt, 1975; Gopi— nathan gt gtt, 1984). All of them have estimated the primary production based only on phytoplankton of the estuary. Considering the contribution of other autotrophic components of the estuary such as periphyton (haptobenthos), sediment flora (herpebenthos) and macropytes, the productivity estimated by earlier authors were essentially underestimations. The present work is an attempt inter glig to assess the contribution of periphytic flora towards the total organic production in the estuary

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mangroves are specialised ecosystems developed along estuarine sea coasts and river mouths in tropical and subtropical regions of the world, mainly in the intertidal zone. Hence, the ecosystem and its biological components is under the influence of both marine and freshwater conditions and has developed a set of physiological adaptations to overcome problems of anoxia, salinity and frequent tidal inundations. This has led to the assemblage of a wide variety of plant and animal species of special adaptations suited to the ecosystem. The path of photosynthesis in mangroves is different from other glycophytes. There are modifications or alterations in other physiological processes such as carbohydrate metabolism or polyphenol synthesis. As they survive under extreme conditions of salinity, temperature, tides and anoxic soil conditions they may have chemical compounds, which protect them from these destructive elements. Mangroves are necessarily tolerant of high salt levels and have mechanisms to take up water despite strong osmotic potentials. Some also take up salts, but excrete them through specialised glands in the leaves. Others transfer salts into senescent leaves or store them in the bark or the wood. Still others simply become increasingly conservative in their water use as water salinity increases. A usual transportation or biosynthetic path as other plants cannot be expected in mangrove plants. In India, the states like West Bengal, Orissa, Andhra Pradesh, Tamil Nadu, Andaman and Nicobar Islands, Kerala, Goa, Maharashtra, and Gujarat occupy vast area of mangroves. Kerala has only 6 km2 total mangrove area with Rhizophora apiculata, Rhizophora mucronata, Bruguiera gymnorrhiza, Bruguiera cylindrica, Avicennia officinalis, Sonneratia caseolaris, Sonneratia apetala and Kandelia candal, as the important species present, most of which belong to the family Rhizophoraceae.Rhizophoraceae mangroves are ranked as “major elements of mangroves” as they give the real shape of this unique and interesting ecosystem and these mangrove species most productive and typical characteristic ecosystem of World renowned. It was found that the Rhizophoraceae mangrove extracts exhibit several bioactive properties. Various parts of these mangroves are used in ethnomedicinal practices. Even though extracts from these mangroves possess therapeutic activity against humans, animal and plant pathogens, the specific metabolites responsible for these bioactivities remains to be elucidated. Various parts of these mangroves are used in ethnomedicinal practices. There is a gap of information towards the chemistry of Rhizophoraceae mangroves from Kerala. Thorough phytochemical investigation can achieve the validity of ethnomedicines as well as apply the use of mangrove plants in the development of new drugs. Such studies can pave a firm base for their use in biomarker and chemotaxonomic studies as well as for the better management of the existing mangrove ecosystem. In this study, the various chemical parameters including minerals, biochemical components, bioactive and biomarker molecules were used to classify and assess the possible potentials of the mangrove plants of the true mangrove family Rhizophoraceae from Kochi.